

For more information regarding the use of this product, please contact the 510 Data Team by sending an email to support@510.global

With support of

Corina Markodimitraki, Melissa El Hamouch and Georgios Roullis

2021.05.20 – Version 1

mailto:support@510.global

For more information regarding the use of this product, please contact the 510 Data Team by sending an email to support@510.global

Introduction .. 1

Product in a nutshell .. 1

What is the Mapillary-based damage annotator and what can you do with it? 1

Who is Mapillary-based damage annotator for? ... 1

Why use the Mapillary-based damage annotator? ... 2

Case study ... 3

Data responsibility ... 4

Datasets .. 4

Data processing ... 4

Non-discrimination .. 4

Human oversight ... 4

Risks .. 4

Requirements ... 5

User knowledge ... 5

Hardware .. 5

Software .. 6

Time .. 6

The product .. 8

What does the Mapillary-based damage annotator consist of? .. 8

Locations to download the product ... 8

Advantages & Limitations ... 8

Setting up the Mapillary-based damage annotator: a step-by-step guide 10

Abbreviations ... 16

Resources.. 16

mailto:support@510.global

 Mapillary-Based Damage Annotator

1

Since March 2020, the 510 Data Team of the Netherlands Red Cross (NLRC) has supported

the Lebanese Red Cross (LRC) by providing a framework to assess the damage caused by the

Beirut blast in August 2020. This manual provides the information that one needs to know

when planning on using this framework to assess damage.

The framework presented in this manual consists of programming scripts and an online

webpage that support the collection of photographic material and analysis thereof for

possible damage detection and assessment.

The 510 Data Team has used the Mapillary-based damage annotator to assess the damage

caused by the explosion that hit Beirut, on August 4th 2020, thereby supporting the Lebanese

Red Cross. This is done in the following way:

1. By collecting photographs taken of street views after the blast

2. By subsequently analyzing the photos and calculating an overall damage score

To collect photographs with a street view, the 510 Data Team uses an API (Automatic

Programming Interface) to download publicly available photos from Mapillary

(www.mapillary.com). They also use several Python scripts and the Oxford VGG image

annotator (https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html), a manual

classification tool to analyze the data and assess damage seen in the photos. Finally, an

overall damage score is calculated. The damage score can be visualized on a map using a GIS

(Geographic Information System) program such as QGIS.

The annotator can be used by any National Society (NS) or other non-governmental

organisation looking to quickly evaluate the damage caused by a natural or man-made

disaster and organize their response. Until now the 510 Data Team has aided the Lebanese

Red Cross in the assessment of the damage caused by the Beirut blast on August 4th 2020.

http://www.mapillary.com/
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html

 Mapillary-Based Damage Annotator

2

The annotator presented in this manual offers an open source, fast and semi-automated

way of assessing damage caused to an area of interest. The annotator can help non-

governmental organizations such as a NS, with fast decision making and response to help

populations in the severely damaged areas. What’s more, the annotator facilitates the

collection and analysis of large amounts of data (if available on Mapillary), and allows the

user to repeat this process as often as they desire.

 Mapillary-Based Damage Annotator

3

The Mapillary-based damage annotator was used to support the LRC in assessing the

damage caused to the city after the explosion on August 4th 2020. The 510 Data Team was

able to support in mapping out the damage done to the city, in order for LRC to focus their

efforts with on the ground support where needed. The main advantage of using this tool is

that the damage annotation can be done remotely and is not required to be used in the area

affected by damage. The street view photographs are collected by the general population or

volunteers on the ground and can then be uploaded to the the open-source Mapillary site.

From there, remote volunteers can download and analyze the photos to calculate the overall

damage done.

For the case of Beirut, a total of 13 volunteers were needed to manually assess the damage

shown in over 1,000 images. Each image was checked by 3 volunteers for validation. The

assessments were done in a span of 12 hours, thus making the tool a fast and efficient

method for damage assessment.

For more information on how data played a role after the Beirut Explosion, please follow the

link below:

https://www.510.global/beirut-after-the-explosion-how-technology-is-playing-a-vital-role/

https://www.510.global/beirut-after-the-explosion-how-technology-is-playing-a-vital-role/

 Mapillary-Based Damage Annotator

4

The type of data used are photographs taken at street view level. The geographic location

will be identifiable to indicate the area of which the damage is made. Additionally, the person

annotating will have to save the annotated photographs in a folder that might, at time,

indicate their name.

The data is collected from Mapillary, which is an open-source site. Photographs can be

downloaded automatically using an Automatic Programming Interface and the annotation is

done in a semi-automated way.

This tool is non-discriminatory.

The tool is dependent on one or multiple people who will manually assess the damage

shown in the images. The calculation of the overall risk depends on the availability of people,

which might be a limitation if the number of people needed is not attained. Each image

should be annotated by 3 or more people to ensure accuracy.

The only foreseeable risk is the ability to identify geographic locations with ease, this might

cause some issues if the designed maps are used for the wrong reasons.

 Mapillary-Based Damage Annotator

5

In this section we describe the skills that someone would need to use the annotator

presented in this manual. In addition to the skills mentioned below, it is crucial the user has

the following skills:

• Analytical thought

• Problem-solving attitude

• Data responsibility (see also section “Data responsibility” of this manual)

• GIS skills

To collect and analyze Twitter data the user will need the following skills:

• Mapillary: it is desirable that the user has knowledge and experience with Mapillary.

• Python: it is necessary that the user has knowledge and experience with Python to

execute the API and run the Python scripts.

• GEOJSON: it is necessary that the user has knowledge and experience with geojson files.

• GIS skills: in case the user wants to visualize the collected data, they will need to have

knowledge of QGIS desktop (or any other GIS program).

Below you can find the hardware requirements for the Mapillary-based damage annotator

explained in this manual.

To collect and analyze the data:

• Python (versions: 2.7.X, 3.6.X):

o Processor: Intel Atom® processor or Intel® Core™ i3 processor

o Disk space: 1 GB

o Operating system: Windows* 7 or later, macOS, or Linux

To visualize the data:

• QGIS:

o Processor: minimum Core i3 2.7Ghz; recommended Core i7 3.5Ghz

 Mapillary-Based Damage Annotator

6

o RAM: minimum 2Gb; recommended 8Gb or more

o Disk space: minimum 500 Gb SATA; recommended SSD 128Gb or 500Gb SATA

o Graphic card: minimum 1Gb RAM; recommended 2Gb RAM (NVIDIA Geforce)

o Operating system: Windows 7-10, Mac OSX, Linux, Unix, or Android

Below we list the software required for the Mapillary-based damage annotator explained in

this manual.

To collect, analyze and visualize the data

• Internet browser (for computers) such as

o Mozilla Firefox

www.mozilla.org/en-US/firefox/new/

o Google Chrome

www.google.com/chrome/

• Installed Python

https://www.python.org/

• (Optional) Installed QGIS

https://www.qgis.org/en/site/

Here we indicate which parameters influence the duration of usage of the Mapillary-based

damage annotator, and state a real-life example of usage by a NS.

The duration of setting up and using the Mapillary-based damage annotator is the total

duration of the following steps: downloading the image data, running the scripts, annotating

the damage, calculating the damage score and optionally, visualizing it. All this depends on

the number of images that need to be annotated and user skills in Python.

For reference, the 510 Data Team of the NLRC spent the following amount of time for each

step in the annotation process for the damage assessment of the Beirut blast:

• To run the script and collect the images: a total of 1,432 images were collected from

Mapillary in a maximum of 10 minutes.

http://www.mozilla.org/en-US/firefox/new/
http://www.google.com/chrome/
https://www.python.org/
https://www.qgis.org/en/site/

 Mapillary-Based Damage Annotator

7

• To assess the damage by means of manual work: a total of 13 volunteers were needed

to manually assess the damage shown in the 1,432 photographs within a total time of 12

hours. Each image was evaluated by 3 different volunteers.

 Mapillary-Based Damage Annotator

8

The annotation of damage can be achieved by using all of the following:

• (Optionally) Bitwarden to acquire the access token for Mapillary

• A Mapillary API (called within a Python script)

• Python scripts

• The Oxford VGG image annotator

• (Optionally) QGIS or any other GIS program

Here we provide the links and locations to find the tools needed to set up and use the

Mapillary-based damage annotator.

• (Optional) Bitwarden to acquire the access token for Mapillary

https://bitwarden.com/

• Github page containing the Python scripts and information needed to run these

https://github.com/rodekruis/building-damage-classification-mapillary

• The Oxford VGG image annotator

https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html

• (Optional) GIS visualization tool such QGIS

www.qgis.org

There are several advantages and limitations linked to using the Mapillary-based damage

annotator. Here we briefly discuss these.

• The user is depended on the data that is available on Mapillary. This depends on internet

access, available means to capture photos and a familiarity of the country’s population

with Mapillary. This could translate to a considerable number of available images (see

Beirut blast example where 1.432 images were collected), but also to a bottleneck in the

pipeline if there are no images available. However, if needed, on-ground volunteers can

take photographs and upload them to Mapillary.

https://bitwarden.com/
https://github.com/rodekruis/building-damage-classification-mapillary
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html
http://www.qgis.org/

 Mapillary-Based Damage Annotator

9

• The exact location of the potential damage is available due the image being linked to a

map through Mapillary. This offers the user very precise information which is helpful

when addressing the needs after the caused damage.

• The pipeline described in this manual requires expertise in Python to setup, which could

be a limitation if there is no expert present in the organization aiming to use the

annotator, although less skill is needed to run the pipeline once it is set up.

• The organization using the annotator is depended on the presence of people to manually

assess the damage in the images. If there is a limited amount of people available to do

the assessment, it could delay the process of calculating the overall risk score.

 Mapillary-Based Damage Annotator

10

1. Register organization at Bitwarden (optional)

Bitwarden is a free and open-source password management service that stores sensitive

information such as website credentials in an encrypted vault. We recommend using

Bitwarden to store the login information of any website your organization uses. If your

organization is not yet registered at Bitwarden (www.bitwarden.com), registration is

recommended to secure login information of the organization to websites. Using

Bitwarden however, is not a prerequisite to using the Mapillary-based damage annotator.

2. Collect relevant images from Mapillary

For this step, the Python script

get_mapillary_images.py is needed. Here,

Mapillary (www.mapillary.org) is used as the

primary source for geotagged photos. Mapillary

offers open source, accessible image data

submitted by the platforms’ users. By using the

get_mapillary_images.py script:

a. Acquire an access token for Mapillary from

Bitwarden.

b. Define the parameters which the images

have to fulfill for collection. The script defines

the date (submitted images from this day

onwards) and the location (by means of a

bounding box) as well as the format

(geojson, see Figure 1) and download folder

of the outputted images.

c. Run the script to collect the images in the

specified folder.

Figure 1 • Part of the collected image data within the

geojson file. The file is opened in

http://json.parser.online.fr/

http://www.bitwarden.com/
http://www.mapillary.org/
http://json.parser.online.fr/

 Mapillary-Based Damage Annotator

11

3. Define the labels and features for the annotation process

For this step, the Python script labelling_project_config.py is needed. This script

is the configuration file used to define the labels for the features that are going to be

used for the annotation process.

a. Define the features for the annotation. Features are the elements one should assess

for possible damage such as windows, balconies etc. For example, to assess if windows

are broken, the label “window_damage” should be defined.

b. Define the importance of possible damage of the chosen features and make the

distinction between light, medium and severe damage. For example, light damage is

indicated with debris (light_features = ['debris']), while medium damage is

indicated with damage to windows (medium_features = ['balcony_damage']).

4. Split the images into batches for the

annotation

For this step, the Python script

generate_batches.py is needed. This script

splits the acquired images of the geojson file into

batches and prepares one “project” per batch in

json format, that will be used later on for the

Oxford VGG image annotator. An example of a

project template in json format,

labelling_project_template.json (found

on the Github page of the annotator), is shown in

figure 2.

5. Manually annotate the images

For this step, the Oxford VGG image annotator is

needed (see section “The product” of this manual)

as well as people to assess the images. As a

standard, we recommend at least 3 people assess

the image independently, to avoid mislabeling

bias.

a. Click “Open Project” (folder icon) and select the

json file containing the desired batch for

analysis (figure 3a).

Figure 2 • Part of the project template json

file, opened in http://json.parser.online.fr/

http://json.parser.online.fr/

 Mapillary-Based Damage Annotator

12

b. Click “Toggle Annotation Editor” (speech bubble icon) to show annotation tab (bottom)

and click “File Annotations” in the annotation tab (figure 3b).

c. For each image, mark damage: click/select if there is damage, do NOT click if there’s

NO damage (figure 3c). If there is uncertainty about the origin of the damage, (e.g., is

the damage a result of the disaster or was it already there?), copy-paste the image_url

(found under filename) in the browser and see how distant the building from disaster

location. It’s recommended to keep the expected damage radius into account.

d. Scroll through the images in the project tab (left) (figure 3d).

e. Save the project (disk icon) at regular intervals (every 20 images) (figure 3e).

f. Label the batches, get all submissions and save them as results_batch_<batch

number>_<annotator name>.json (example: results_batch_12_bob.json).

6. Merge the submissions and calculate damage score

For this step, the Python script merge_results.py is needed. This script fuses all the

submissions by all annotators (people) together and:

a. saves the information gathered per feature into one geojson vector file which also

contains the geographical information of the assessed images (e.g., all information

regarding windows is merged, see figure 4) and the feature-specific score is calculated

Figure 3 • The Oxford VGG image annotator interface. The shown image is an example image used for the

damage assessment for the Beirut blast. Yellow circles with letters in bold refer to the sub-steps of step 5.

 Mapillary-Based Damage Annotator

13

per image (for more info on how the score is calculated, please refer to the Github

page, see section “The product” of this manual).

b. saves the information gathered of all features into one geojson vector file which also

contains the geographical information of the assessed images (e.g., all information

regarding windows, balconies, debris is merged, see figure 5) and the overall damage

score is calculated per image (for more info on how the score is calculated, please

refer to the Github page, see section “The product” of this manual).

Figure 4 • Part of the geojson file containing

information for the feature “windows”. The

file is opened in http://json.parser.online.fr/

Figure 5 • Part of the geojson file containing

information for all features. The file is

opened in http://json.parser.online.fr/

http://json.parser.online.fr/
http://json.parser.online.fr/

 Mapillary-Based Damage Annotator

14

7. Visualize the damage score on a map (optional)

For this step a Geographic Information System (GIS) program such as QGIS is needed.

The damage score per feature, or the overall damage score can be visualized in a number

of ways, but a guide to visualization falls outside the scope of this manual. In the example

shown in figure 6, the damage score for the specific feature “balconies” has been

visualized with a color-coded dot: red indicating confirmed damage, yellow indicating

possible damage and green indicating no damage. In a similar manner, the overall

damage score for all features is shown in figure 7. The color code is similar to that of

figure 6.

Figure 6 • Example of the feature-specific damage score visualization, in this case balconies. Each circle

represents the damage score calculated for that particular image. The damage score was calculated for

balconies. Visualization in QGIS.

 Mapillary-Based Damage Annotator

15

Figure 7 • Example of the overall damage score visualization. Each circle represents the damage score

calculated for that particular image. Visualization in QGIS.

 Mapillary-Based Damage Annotator

16

NLRC Netherlands Red Cross

LRC Lebanese Red Cross

SARS-CoV-2 Severe Acute Respiratory Syndrome coronavirus 2

COVID-19 The disease caused by the SARS-CoV-2 virus

NS National Society/Societies

API Application Programming Interface

GIS Geographic Information System

• Online program that reads json and geojson files

http://json.parser.online.fr/

• The Mapillary-based damage annotator Github page

https://github.com/rodekruis/building-damage-classification-mapillary

• The instructions given to the annotators

https://drive.google.com/file/d/1nbwxGmjRB_JPdbs3Jp4H7XCoi_hz64xv/view

http://json.parser.online.fr/
https://github.com/rodekruis/building-damage-classification-mapillary
https://drive.google.com/file/d/1nbwxGmjRB_JPdbs3Jp4H7XCoi_hz64xv/view

